Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 72, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38267871

ABSTRACT

Melatonin plays important roles in multiple stress responses; however, the downstream signaling pathway and molecular mechanism remain unclear. This study aimed to elucidate the transcriptional regulation of melatonin-induced salt stress tolerance in Phaseolus vulgaris L. and identify the key downstream transcription factors of melatonin through transcriptomic and metabolomic analyses. The melatonin-induced transcriptional network of hormones, transcription factors, and functional genes was established under both control and stress conditions. Among these, eight candidate transcription factors were identified via gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, one gene related to transmembrane transport of salts (Phvul.004G177300). These genes may play a role in maintaining the cell structure and excreting sodium ions outside the cell or transporting them to the vacuoles for storage. Melatonin regulates the Phvul.009G210332 gene and metabolites C05642 (N-acetyl-N-2-formyl-5-methoxycanurine), C05643 (6-hydroxymelatonin), C05660 (5-methoxyindoleacetic acid) involved in tryptophan metabolism. The metabolites C05642 and C05643 were identified as decomposition products of tryptophan, indicating that exogenous melatonin entered the P. vulgaris tissue and was metabolized. Melatonin promotes the synthesis and metabolism of tryptophan, which is crucial to plant metabolism, growth, maintenance, and repair.


Subject(s)
Melatonin , Phaseolus , Phaseolus/genetics , Tryptophan , Gene Expression Profiling , Salt Stress , Transcription Factors
2.
ACS Appl Mater Interfaces ; 15(27): 32839-32851, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37358561

ABSTRACT

The corrosion resistance of the waterborne epoxy coating is poor during long-term service, which greatly limits its widespread application. In this paper, the halloysite nanotubes (HNTs) were modified by polyaniline (PANI) and then used as nanocontainers to encapsulate the green corrosion inhibitor praseodymium (III) cations (Pr3+), obtaining HNTs@PANI@Pr3+ nanoparticles. A scanning electron microscope, transmission electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis were applied to characterize the formation of PANI and the absorption of Pr3+ cations. The corrosion-inhibiting ability of the HNTs@PANI@Pr3+ nanoparticles for iron sheets and the anticorrosion properties of the nanocomposite coatings were evaluated by the electrochemical impedance spectroscopy technique. The results indicated that the coating containing HNTs@PANI@Pr3+ nanoparticles exhibited excellent anticorrosion performance. After immersion in 3.5 wt % NaCl solution for 50 days, its Zf=0.01 Hz value was still as high as 9.4 × 108 Ω cm2. The icorr value was 3 orders of magnitude lower than that of the pure WEP coating. The excellent anticorrosion property of the HNTs@PANI@Pr3+ coating could be attributed to the synergy of three beneficial factors, including evenly distributed nanoparticles, PANI, and Pr3+ cations. This research will provide theoretical and technical support for the development of waterborne coatings with high corrosion resistance.

3.
Mol Breed ; 43(3): 15, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37313298

ABSTRACT

Anthocyanin makes snap bean (Phaseolus vulgaris L.) pods purple, which helps seed dispersal and protects against environmental stress. In this study, we characterised the snap bean purple mutant pv-pur, which has purple cotyledon, hypocotyl, stem, leaf vein, flower and pod tissues. Total anthocyanin, delphinidin and malvidin levels in mutant pods were significantly higher than in wild-type plants. We constructed two populations for fine mapping of the PV-PUR purple mutation gene, located in the 243.9-kb region of chromosome 06. We identified Phvul.006g018800.3, encoding F3'5'H, as a candidate gene for PV-PUR. Six single-base mutations occurred in the coding region of this gene, altering protein structure. PV-PUR and pv-pur genes were transferred into Arabidopsis, respectively. Compared with the wild-type, the leaf base and internode of T-PV-PUR plant were purple, and the phenotype of T-pv-pur plant remained unchanged, which verified the function of the mutant gene. The results demonstrated that PV-PUR is a crucial gene for anthocyanin biosynthesis in snap bean, resulting in purple colouration. The findings lay a foundation for future breeding and improvement of snap bean. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01362-8.

4.
BMC Plant Biol ; 23(1): 85, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36759761

ABSTRACT

Cold temperatures can be detrimental to crop survival and productivity. Breeding progress can be improved by understanding the molecular basis of low temperature tolerance. We investigated the key routes and critical metabolites related to low temperature resistance in cold-tolerant and -sensitive common bean cultivars 120 and 093, respectively. Many potential genes and metabolites implicated in major metabolic pathways during the chilling stress response were identified through transcriptomics and metabolomics research. Under chilling stress, the expression of many genes involved in lipid, amino acid, and flavonoid metabolism, as well as metabolite accumulation increased in the two bean types. Malondialdehyde (MDA) content was lower in 120 than in 093. Regarding amino acid metabolism, 120 had a higher concentration of acidic amino acids than 093, whereas 093 had a higher concentration of basic amino acids. Methionine accumulation was clearly higher in 120 than in 093. In addition, 120 had a higher concentration of many types of flavonoids than 093. Flavonoids, methionine and malondialdehyde could be used as biomarkers of plant chilling injury. Transcriptome analysis of hormone metabolism revealed considerably greater, expression of abscisic acid (ABA), gibberellin (GA), and jasmonic acid (JA) in 093 than in 120 during chilling stress, indicating that hormone regulation modes in 093 and 120 were different. Thus, chilling stress tolerance is different between 093 and 120 possibly due to transcriptional and metabolic regulation.


Subject(s)
Phaseolus , Phaseolus/genetics , Phaseolus/metabolism , Cold-Shock Response/genetics , Transcriptome , Plant Breeding , Gene Expression Profiling , Metabolomics , Cold Temperature , Flavonoids/metabolism , Amino Acids/metabolism , Methionine/metabolism , Hormones/metabolism , Gene Expression Regulation, Plant
5.
Infect Genet Evol ; 104: 105362, 2022 10.
Article in English | MEDLINE | ID: mdl-36084837

ABSTRACT

Porcine kobuvirus (PKV) infection is very common in both healthy pigs and diarrhea pigs throughout the world. However, there is no proof that it causes diarrhea, and little is known about its role in diarrhea. There are only a few reports concerning porcine kobuvirus separation at present, which makes investigating its invasion and pathogenesis mechanisms difficult. This study sequenced the entire genome of a porcine kobuvirus strain termed "Wuhan2020" after it was isolated from intestinal tissue samples of healthy piglets. The analysis results revealed that it shared the most resemblance with the WUH1 strain (89.5%) and belonged to the same evolutionary branch as the Hungarian strain S-1-SUN. The PKV was located using the in situ hybridization (ISH) approach, which revealed that it was colonized in intestinal villus epithelial cells and lymphocytes in the Peyer's patch. In general, we analyzed the genetic evolution of PKV, discovered PKV susceptible cells and determined PKV localization in the intestine of infected pigs, providing a reference for future research.


Subject(s)
Kobuvirus , Picornaviridae Infections , Swine Diseases , Animals , China , Diarrhea , Feces , Genomics , Intestines , Kobuvirus/genetics , Phylogeny , Picornaviridae Infections/veterinary , Sequence Analysis , Swine
6.
Arch Virol ; 167(8): 1649-1657, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35661915

ABSTRACT

Porcine deltacoronavirus (PDCoV) and porcine epidemic diarrhea virus (PEDV) have often been detected simultaneously in piglets with coronavirus diarrhea. However, the intestinal immune response to the interaction between circulating PDCoV and PEDV is unknown. Therefore, this study was conducted to investigate the intestinal immunity of neonatal piglets that were exposed first to PDCoV and then to PEDV. The amounts and distribution of CD3+ T lymphocytes, B lymphocytes, and goblet cells (GCs) in the small intestine were analyzed by immunohistochemistry and periodic acid-Schiff staining, respectively. The expression levels of pattern recognition receptors and downstream mediator cytokines were analyzed by qPCR and ELISA. The results showed that the numbers of GCs, CD3+ T lymphocytes, and B lymphocytes in the duodenum and jejunum of the PDCoV + PEDV coinoculated piglets were increased compared with those of piglets inoculated with PEDV alone. The piglets in the PDCoV + PEDV group had significantly upregulated IFN-α and IFN-λ1 compared with the PEDV single-inoculated piglets. These results suggest that PDCoV + PEDV-coinfected piglets can activate intestinal antiviral immunity more strongly than piglets infected with PEDV alone, which provides new insight into the pathogenesis mechanism of swine enteric coronavirus coinfection that may be used for vaccination in the future.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Coronavirus Infections/epidemiology , Deltacoronavirus , Diarrhea/veterinary , Porcine epidemic diarrhea virus/physiology , Swine
7.
Int J Mol Sci ; 23(3)2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35163188

ABSTRACT

Pod color is a major economic trait of snap beans (Phaseolus vulgaris L.), among which the pod with a purple stripe is more attractive to people. A stable purple mutant with purple stripes on the pods was obtained by artificial mutagenesis with the high generation snap bean inbred line 'A18-1'. In order to reveal the genetic factors and pathways responsible for the purple appearance in snap bean, we performed transcriptome and metabolome analyses using the green stem and yellow pod cultivar 'A18-1' and its purple mutant 'pv-pur' via 60Co-γ radiation. Transcriptome analysis showed that three genes in the anthocyanin biosynthetic pathway were differentially expressed, among which the expression level of F3'5'H (Phvul.006G018800) was increased in the mutant 'pv-pur', while expression of F3'H (Phvul.004G021200) and ANS (Phvul.002G152700) was downregulated. Anthocyanin-targeted metabonomics analysis showed significant differences in the contents of 10 metabolites between the wild type and mutant plants. Combined analysis of transcriptome and metabolomics showed that one differential metabolite, delphinidin, was related to the differential expression of Phvul.006G024700, Phvul.002G152700, and Phvul.006G018800. Based on the levels of six anthocyanins in wild type and mutant plants, we speculative that the purple appearance of the mutant 'pv-pur' is caused by the increased expression of F3'5'H (Phvul.006G018800), the key enzyme in the transformation from dihydroflavanol (DHK) to dihydromyricetone (DHM) in the anthocyanin biosynthetic pathway. The results lay a foundation for further studies on the molecular mechanism of anthocyanin synthesis in snap bean, and provide a framework for breeding different colors of snap bean.


Subject(s)
Phaseolus/genetics , Pigmentation/genetics , Anthocyanins/metabolism , Color , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Phenotype , Plant Proteins/genetics , Transcriptome/genetics
8.
Theor Appl Genet ; 134(11): 3773-3784, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34338807

ABSTRACT

KEY MESSAGE: Using bulked segregant analysis combined with next-generation sequencing, we delimited the pv-ye gene responsible for the golden pod trait of snap bean cultivar A18-1. Sequence analysis identified Phvul.002G006200 as the candidate gene. The pod is the main edible part of snap beans (Phaseolus vulgaris L.). The commercial use of the pods is mainly affected by their color. Consumers seem to prefer golden pods. The aim of the present study was to identify the gene responsible for the golden pod trait in the snap bean. 'A18-1' (a golden bean cultivar) and 'Renaya' (a green bean cultivar) were chosen as the experimental materials. Genetic analysis indicated that a single recessive gene, pv-ye, controls the golden pod trait. A candidate region of 4.24 Mb was mapped to chromosome Pv 02 using bulked-segregant analysis coupled with whole-genome sequencing. In this region, linkage analysis in an F2 population localized the pv-ye gene to an interval of 182.9 kb between the simple sequence repeat markers SSR77 and SSR93. This region comprised 16 genes (12 annotated genes from the P. vulgaris database and 4 functionally unknown genes). Combined with transcriptome sequencing results, we identified Phvul.002G006200 as the potential candidate gene for pv-ye. Sequencing of Phvul.002G006200 identified a single-nucleotide polymorphism (SNP) in pv-ye. A pair of primers covering the SNP were designed, and the fragment was sequenced to screen 1086 F2 plants with the 'A18-1' phenotype. Our findings showed that among the 1086 mapped individuals, the SNP cosegregated with the 'A18-1' phenotype. The findings presented here could form the basis to reveal the molecular mechanism of the golden pod trait in the snap bean.


Subject(s)
Genes, Plant , Genes, Recessive , Phaseolus/genetics , Pigmentation/genetics , Base Sequence , Carotenoids , Chlorophyll/biosynthesis , Chromosome Mapping , Color , Genetic Linkage , Genetic Markers , Microsatellite Repeats , Phenotype
9.
Virology ; 558: 119-125, 2021 06.
Article in English | MEDLINE | ID: mdl-33756424

ABSTRACT

Coinfection of porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) is one of common findings in diarrheal piglets that cause massive economic losses to the pig industry globally. However, the mechanism of the co-infection is unclear. In this study, neonatal non-colostrum-fed piglets were exposed orally with a single infection of PDCoV or PEDV, or coinfection of PDCoV and PEDV. Clinically all viral infected piglets developed watery diarrhea and dehydration in 24 h post-exposure (hpe) and were succumbed to viral diarrhea disease and euthanized at 72 hpe. Histopathologically, acute gastroenteritis is evident in all viral infected piglet. Immunohistochemistry, RNAscope and RT-qPCR demonstrated that PEDV tropism changes from epithelial cells of small intestine to gastric epithelial cells and macrophages in Peyer's patches in the ileum. These findings suggest that coinfection of PDCoV and PEDV can alter PEDV tropism that may affect the outcome of viral disease in piglets. This animal model can be used for the pathogenesis and vaccination of viral coinfection in piglet in the future.


Subject(s)
Coinfection/virology , Coronavirus Infections/veterinary , Deltacoronavirus/pathogenicity , Gastrointestinal Tract/virology , Porcine epidemic diarrhea virus/pathogenicity , Viral Tropism , Animals , Coronavirus Infections/virology , Diarrhea/virology , Disease Models, Animal , Epithelial Cells/virology , Ileum/virology , Swine
10.
Mol Genet Genomics ; 296(2): 379-390, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33449160

ABSTRACT

Common bean (Phaseolus vulgaris L.) is a short-day plant and its flowering time, and consequently, pod yield and quality is influenced by photoperiod. In this study, the photoperiodic-sensitive variety 'Hong jin gou', which flowers 31 days (d) earlier in short-day than in long-day, was used as the experimental material. Samples were collected to determine the growth and photosynthetic parameters in each daylength treatment, and transcriptome and metabolome data were conducted. We identified eight genes related to flowering by further screening for differentially expressed genes. These genes function to regulate the biological clock. The combination of differentially expressed genes and metabolites, together with the known regulation network of flowering time and the day-night expression pattern of related genes allow us to speculate on the regulation of flowering time in the common bean and conclude that TIMING OF CAB EXPRESSION1 (TOC1) plays a pivotal role in the network and its upregulation or downregulation causes corresponding changes in the expression of downstream genes. The regulatory network is also influenced by gibberellic acid (GA) and jasmonic acid (JA). These regulatory pathways jointly comprise the flowering regulatory network in common bean.


Subject(s)
Gene Expression Profiling/methods , Metabolomics/methods , Phaseolus/physiology , Transcription Factors/genetics , Biological Clocks , Flowers/physiology , Gene Expression Regulation, Plant/drug effects , Gene Regulatory Networks/drug effects , Gibberellins/pharmacology , Linoleic Acids/pharmacology , Phaseolus/genetics , Phaseolus/metabolism , Photoperiod , Plant Proteins/genetics , Sequence Analysis, RNA
11.
Mol Genet Genomics ; 295(6): 1325-1337, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32607601

ABSTRACT

The main edible organ of snap bean (Phaseolus vulgaris L.) is the pod, whose color is a main characteristic affecting its commercial use. Golden pods are popular with consumers; however, color instability affects their commercial exploitation and causes economic losses to the planters. In this study, we focused on the different pod color of two varieties of snap bean. The golden yellow color of snap bean pods is controlled by a single recessive nuclear gene located at 1-4.24 Mb of chromosome 2. To explore the physiological and molecular mechanism of the golden pod color, the golden bean line 'A18-1' and the green bean line 'Renaya' were selected as experimental materials. We analyzed the pigment contents, detected the intermediate products of chlorophyll biosynthesis, and identified differentially expressed genes using RNA-seq. The formation of golden bean pods reflects a chlorophyll deficiency, which was speculated to be caused by impairment of the Mg-protoporphyrin IX to chlorophyllide step. In 'A18-1' and 'Renaya' pods on 10, 14, and 18 days, five genes related to this step were differentially expressed, all of which were protochlorophyllide oxidoreductase (POR) genes. Among them, the expression changes of the Phvul. 004G112700, Phvul.007G157500, and Phvul. 004G112400 genes were consistent with the color change and physiological data during pod development in 'A18-1' and 'Renaya'. We speculated that the altered expression of these three POR genes might be related to changes in the chlorophyllide content. The results might provide insight into the understanding of chlorophyll biosynthesis and crop breeding for snap bean.


Subject(s)
Chlorophyll/metabolism , Gene Expression Regulation, Plant , Phaseolus/metabolism , Plant Proteins/metabolism , Seeds/metabolism , Vicia faba/metabolism , Color , Phaseolus/genetics , Phaseolus/growth & development , Plant Proteins/genetics , Seeds/genetics , Seeds/growth & development , Transcriptome , Vicia faba/genetics , Vicia faba/growth & development
12.
Genes Genomics ; 41(12): 1445-1455, 2019 12.
Article in English | MEDLINE | ID: mdl-31535316

ABSTRACT

BACKGROUND: Snap bean, Phaseolus vulgaris L., as a warm-season vegetable, low temperature stress seriously affect the yield and quality. At present, little is known about the genes and molecular regulation mechanism in cold response in snap bean exposed to low temperature. OBJECTIVES: Our objectives were to identify the low temperature response genes in snap bean and to examine differences in the gene response between cold-tolerant and cold-sensitive genotypes. METHODS: We used two highly inbred snap bean lines in this study, the cold-tolerant line '120', and the cold-sensitive line '093'. The plants were grown to the three leaf and one heart stage and exposed to 4 °C low temperature. We used RNA sequencing (RNA-seq) to analyze the differences of gene expression. RESULTS: 988 and 874 cold-responsive genes were identified in 'T120 vs CK120' and 'T093 vs CK093' ('T' stands for low temperature treatment, and 'CK' stands for control at room temperature), respectively. Of these, 555 and 442 genes were unique to cold-stressed lines '120' and '093', respectively compared to the control. Our analysis of these differentially expressed genes indicates that Ca2+, ROS, and hormones act as signaling molecules that play important roles in low temperature response in P. vulgaris. Altering the expression of genes in these signaling pathways activates expression of downstream response genes which can interact with other signaling regulatory networks. This may maintained the balance of ROS and hormones, making line '120' more cold-tolerant than line '093'. CONCLUSION: Our results provide a preliminarily understanding of the molecular basis of low temperature response in snap bean, and also establish a foundation for the future genetic improvement of cold sensitivity in snap bean by incorporating genes for cold tolerance.


Subject(s)
Cold Temperature , Cold-Shock Response/genetics , Phaseolus/genetics , Transcriptome , Calcium Signaling , Metabolic Networks and Pathways/genetics , Phaseolus/metabolism , Plant Growth Regulators/physiology , Reactive Oxygen Species/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...